

Newxal NefWexk Des(sh
2#nd EdLion,

Martin T. Hagan
Oklahoma State University
Stillwater, Oklahoma

Howard B. Demuth
University of Colorado
Boulder, Colorado

Mark Hudson Beale
MHB Inc.
Hayden, Idaho

Orlando De Jesus
Consultant

Frisco, Texas

Copyright by Martin T. Hagan and Howard B. Demuth. All rights reserved. No part of the book
may be reproduced, stored in a retrieval system, or transcribed in any form or by any means -
electronic, mechanical, photocopying, recording or otherwise - without the prior permission of
Hagan and Demuth.

MTH
To Janet, Thomas, Daniel, Mom and Dad

HBD
To Hal, Katherine, Kimberly and Mary

MHB
To Leah, Valerie, Asia, Drake, Coral and Morgan

ODJ

To: Marisela, Maria Victoria, Manuel, Mamd y Papd.

Neural Network Design, 2nd Edition, eBook

OVERHEADS and DEMONSTRATION PROGRAMS can be found at the following website:
hagan.okstate.edu/nnd.html

A somewhat condensed paperback version of this text can be ordered from Amazon.

Contents

Preface
Introduction
Objectives 1-1
History 1-2
Applications 1-5
Biological Inspiration 1-8
Further Reading 1-10
Neuron Model and Network Architectures m
Objectives 2-1
Theory and Examples 2-2
Notation 2-2
Neuron Model 2-2
Single-Input Neuron 2-2
Transfer Functions 2-3
Multiple-Input Neuron 2-7
Network Architectures 2-9
A Layer of Neurons 2-9
Multiple Layers of Neurons 2-10
Recurrent Networks 2-13
Summary of Results 2-16
Solved Problems 2-20
Epilogue 2-22

Exercises 2-23

An Illustrative Example

Objectives
Theory and Examples
Problem Statement
Perceptron
Two-Input Case
Pattern Recognition Example
Hamming Network
Feedforward Layer
Recurrent Layer
Hopfield Network
Epilogue
Exercises

Perceptron Learning Rule

Objectives
Theory and Examples
Learning Rules
Perceptron Architecture
Single-Neuron Perceptron
Multiple-Neuron Perceptron
Perceptron Learning Rule
Test Problem
Constructing Learning Rules
Unified Learning Rule
Training Multiple-Neuron Perceptrons
Proof of Convergence
Notation
Proof
Limitations
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

ii

3-1

3-2
3-3

3-5
3-8
3-8
3-9
3-12
3-15
3-16

4-1

4-2
4-3

4-8
4-8

4-10
4-12
4-13
4-15
4-15
4-16
4-18
4-20
4-21
4-33
4-34
4-36

Signal and Weight Vector Spaces

Objectives 5-1

Theory and Examples 5-2

Linear Vector Spaces 5-2

Linear Independence 5-4

Spanning a Space 5-5

Inner Product 5-6

Norm 5-7

Orthogonality 5-7

Gram-Schmidt Orthogonalization 5-8

Vector Expansions 5-9
Reciprocal Basis Vectors 5-10
Summary of Results 5-14
Solved Problems 5-17
Epilogue 5-26
Further Reading 5-27
Exercises 5-28

n Linear Transformations for Neural Networks

Objectives 6-1

Theory and Examples 6-2

Linear Transformations 6-2

Matrix Representations 6-3

Change of Basis 6-6
Eigenvalues and Eigenvectors 6-10
Diagonalization 6-13
Summary of Results 6-15
Solved Problems 6-17
Epilogue 6-28
Further Reading 6-29

Exercises 6-30

iii

Supervised Hebbian Learning

Objectives 7-1
Theory and Examples 7-2
Linear Associator 7-3
The Hebb Rule 7-4
Performance Analysis 7-5
Pseudoinverse Rule 7-7
Application 7-10
Variations of Hebbian Learning 7-12
Summary of Results 17-4
Solved Problems 7-16
Epilogue 7-29
Further Reading 7-30
Exercises 7-31
n Performance Surfaces and Optimum Points E
Objectives 8-1
Theory and Examples 8-2
Taylor Series 8-2
Vector Case 8-4
Directional Derivatives 8-5
Minima 8-7
Necessary Conditions for Optimality 8-9
First-Order Conditions 8-10
Second-Order Conditions 8-11
Quadratic Functions 8-12
Eigensystem of the Hessian 8-13
Summary of Results 8-20
Solved Problems 8-22
Epilogue 8-34
Further Reading 8-35

Exercises 8-36

iv

Performance Optimization

Objectives
Theory and Examples
Steepest Descent
Stable Learning Rates
Minimizing Along a Line
Newton’s Method
Conjugate Gradient
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Widrow-Hoff Learning

Objectives
Theory and Examples
ADALINE Network
Single ADALINE
Mean Square Error
LMS Algorithm
Analysis of Convergence
Adaptive Filtering
Adaptive Noise Cancellation
Echo Cancellation
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

9-1

9-2
9-6

9-10
9-15
9-21
9-23
9-37
9-38
9-39

10-1
10-2
10-2
10-3
10-4
10-7
10-9
10-13
10-15
10-21
10-22
10-24
10-40
10-41
10-42

Backpropagation
Objectives

Theory and Examples
Multilayer Perceptrons
Pattern Classification
Function Approximation
The Backpropagation Algorithm
Performance Index
Chain Rule
Backpropagating the Sensitivities
Summary
Example
Batch vs. Incremental Training
Using Backpropagation
Choice of Network Architecture
Convergence
Generalization
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Variations on Backpropagation

Objectives
Theory and Examples
Drawbacks of Backpropagation
Performance Surface Example
Convergence Example
Heuristic Modifications of Backpropagation
Momentum
Variable Learning Rate
Numerical Optimization Techniques
Conjugate Gradient
Levenberg-Marquardt Algorithm
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

vi

11-1
11-2
11-2
11-3
11-4
11-7
11-8
11-9
11-11
11-13
11-14
11-17
11-18
11-18
11-20
11-22
11-25
11-27
11-41
11-42
11-44

12-1
12-2
12-3
12-3
12-7
12-9
12-9
12-12
12-14
12-14
12-19
12-28
12-32
12-46
12-47
12-50

Generalization
Objectives 13-1

Theory and Examples 13-2
Problem Statement 13-2
Methods for Improving Generalization 13-5

Estimating Generalization Error 13-6
Early Stopping 13-6
Regularization 13-8
Bayesian Analysis 13-10
Bayesian Regularization 13-12
Relationship Between Early Stopping

and Regularization 13-19

Summary of Results 13-29

Solved Problems 13-32

Epilogue 13-44

Further Reading 13-45

Exercises 13-47

Dynamic Networks

Objectives 14-1
Theory and Examples 14-2
Layered Digital Dynamic Networks 14-3
Example Dynamic Networks 14-5
Principles of Dynamic Learning 14-8
Dynamic Backpropagation 14-12
Preliminary Definitions 14-12
Real Time Recurrent Learning 14-12
Backpropagation-Through-Time 14-22
Summary and Comments on
Dynamic Training 14-30
Summary of Results 14-34
Solved Problems 14-37
Epilogue 14-46
Further Reading 14-47

Exercises 14-48

vii

Associative Learning

Objectives
Theory and Examples
Simple Associative Network
Unsupervised Hebb Rule
Hebb Rule with Decay
Simple Recognition Network
Instar Rule
Kohonen Rule
Simple Recall Network
Outstar Rule
Summary of Results
Solved Problems

Epilogue
Further Reading
Exercises
Competitive Networks
Objectives

Theory and Examples
Hamming Network
Layer 1
Layer 2
Competitive Layer
Competitive Learning
Problems with Competitive Layers
Competitive Layers in Biology
Self-Organizing Feature Maps
Improving Feature Maps
Learning Vector Quantization
LVQ Learning
Improving LVQ Networks (LVQ2)
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

viii

15-1
15-2
15-3
15-5
15-7
15-9
15-11
15-15
15-16
15-17
15-21
15-23
15-34
15-35
15-37

16-1
16-2
16-3
16-3
16-4
16-5
16-7
16-9
16-10
16-12
16-15
16-16
16-18
16-21
16-22
16-24
16-37
16-38
16-39

Radial Basis Networks

Objectives
Theory and Examples
Radial Basis Network
Function Approximation
Pattern Classification
Global vs. Local
Training RBF Networks
Linear Least Squares
Orthogonal Least Squares
Clustering
Nonlinear Optimization
Other Training Techniques
Summary of Results
Solved Problems

Epilogue
Further Reading
Exercises
Grossberg Network
Objectives

Theory and Examples
Biological Motivation: Vision
lllusions
Vision Normalization
Basic Nonlinear Model
Two-Layer Competitive Network
Layer 1
Layer 2
Choice of Transfer Function
Learning Law
Relation to Kohonen Law
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

ix

17-1
17-2
17-2
17-4
17-6
17-9
17-10
17-11
17-18
17-23
17-25
17-26
17-27
17-30
17-35
17-36
17-38

18-1
18-2

18-3

18-4

18-8

18-9

18-12
18-13
18-17
18-20
18-22
18-24
18-26
18-30
18-42
18-43
18-45

Adaptive Resonance Theory

Objectives 19-1
Theory and Examples 19-2
Overview of Adaptive Resonance 19-2
Layer 1 19-4
Steady State Analysis 19-6
Layer 2 19-10
Orienting Subsystem 19-13
Learning Law: L1-L2 19-17
Subset/Superset Dilemma 19-17
Learning Law 19-18
Learning Law: L2-L1 19-20
ART1 Algorithm Summary 19-21
Initialization 19-21
Algorithm 19-21
Other ART Architectures 19-23
Summary of Results 19-25
Solved Problems 19-30
Epilogue 19-45
Further Reading 19-46
Exercises 19-48
Objectives 20-1
Theory and Examples 20-2
Recurrent Networks 20-2
Stability Concepts 20-3
Definitions 20-4
Lyapunov Stability Theorem 20-5
Pendulum Example 20-6
LaSalle’s Invariance Theorem 20-12
Definitions 20-12
Theorem 20-13
Example 20-14
Comments 20-18
Summary of Results 20-19
Solved Problems 20-21
Epilogue 20-28
Further Reading 20-29

Exercises 30

Hopfield Network

Objectives
Theory and Examples
Hopfield Model
Lyapunov Function
Invariant Sets
Example
Hopfield Attractors
Effect of Gain
Hopfield Design
Content-Addressable Memory
Hebb Rule
Lyapunov Surface
Summary of Results
Solved Problems
Epilogue
Further Reading
Exercises

Practical Training Issues

Objectives
Theory and Examples
Pre-Training Steps
Selection of Data
Data Preprocessing
Choice of Network Architecture
Training the Network
Weight Initialization
Choice of Training Algorithm
Stopping Criteria
Choice of Performance Function
Committees of Networks
Post-Training Analysis
Fitting
Pattern Recognition
Clustering
Prediction
Overfitting and Extrapolation
Sensitivity Analysis
Epilogue
Further Reading

xi

21-1
21-2
21-3
21-5
21-7
21-7
21-11
21-12
21-16
21-16
21-18
21-22
21-24
21-26
21-36
21-37
21-40

22-1

22-2

22-3

22-3

22-5

22-8

22-13
22-13
22-14
22-14
22-16
22-18
22-18
22-18
22-21
22-23
22-24
22-27
22-28
22-30
22-31

Case Study 1:Function Approximation

Objectives 23-1
Theory and Examples 23-2
Description of the Smart Sensor System 23-2
Data Collection and Preprocessing 23-3
Selecting the Architecture 23-4
Training the Network 23-5
Validation 23-7
Data Sets 23-10
Epilogue 23-11
Further Reading 23-12
Case Study 2:Probability Estimation
Objectives 24-1
Theory and Examples 24-2
Description of the CVD Process 24-2
Data Collection and Preprocessing 24-3
Selecting the Architecture 24-5
Training the Network 24-7
Validation 24-9
Data Sets 24-12
Epilogue 24-13
Further Reading 24-14
Case Study 3:Pattern Recognition
Objectives 25-1
Theory and Examples 25-2
Description of Myocardial Infarction Recognition 25-2
Data Collection and Preprocessing 25-3
Selecting the Architecture 25-6
Training the Network 25-7
Validation 25-7
Data Sets 25-10
Epilogue 25-11

Further Reading 25-12

xii

Case Study 4: Clustering

Objectives

Theory and Examples
Description of the Forest Cover Problem
Data Collection and Preprocessing
Selecting the Architecture
Training the Network
Validation
Data Sets

Epilogue

Further Reading

Case Study 5: Prediction

Objectives
Theory and Examples
Description of the Magnetic Levitation System
Data Collection and Preprocessing
Selecting the Architecture
Training the Network
Validation
Data Sets
Epilogue
Further Reading

xiii

26-1
26-2
26-2
26-4
26-5
26-6
26-7
26-11
26-12
26-13

27-1
27-2
27-2
27-3
27-4
27-6
27-8
27-13
27-14
27-15

EEEB

Appendices
Bibliography
Notation
Software

Index

xiv

Preface

This book gives an introduction to basic neural network architectures and
learning rules. Emphasis is placed on the mathematical analysis of these
networks, on methods of training them and on their application to practical
engineering problems in such areas as nonlinear regression, pattern recog-
nition, signal processing, data mining and control systems.

Every effort has been made to present material in a clear and consistent
manner so that it can be read and applied with ease. We have included
many solved problems to illustrate each topic of discussion. We have also
included a number of case studies in the final chapters to demonstrate
practical issues that arise when using neural networks on real world prob-
lems.

Since this is a book on the design of neural networks, our choice of topics
was guided by two principles. First, we wanted to present the most useful
and practical neural network architectures, learning rules and training
techniques. Second, we wanted the book to be complete in itself and to flow
easily from one chapter to the next. For this reason, various introductory
materials and chapters on applied mathematics are included just before
they are needed for a particular subject. In summary, we have chosen some
topics because of their practical importance in the application of neural
networks, and other topics because of their importance in explaining how
neural networks operate.

We have omitted many topics that might have been included. We have not,
for instance, made this book a catalog or compendium of all known neural
network architectures and learning rules, but have instead concentrated
on the fundamental concepts. Second, we have not discussed neural net-
work implementation technologies, such as VLSI, optical devices and par-
allel computers. Finally, we do not present the biological and psychological
foundations of neural networks in any depth. These are all important top-
ics, but we hope that we have done the reader a service by focusing on those
topics that we consider to be most useful in the design of neural networks
and by treating those topics in some depth.

This book has been organized for a one-semester introductory course in
neural networks at the senior or first-year graduate level. (It is also suit-
able for short courses, self-study and reference.) The reader is expected to
have some background in linear algebra, probability and differential equa-
tions.

2
+2

Preface

Each chapter of the book is divided into the following sections: Objectives,
Theory and Examples, Summary of Results, Solved Problems, Epilogue,
Further Reading and Exercises. The Theory and Examples section compris-
es the main body of each chapter. It includes the development of fundamen-
tal ideas as well as worked examples (indicated by the icon shown here in
the left margin). The Summary of Results section provides a convenient
listing of important equations and concepts and facilitates the use of the
book as an industrial reference. About a third of each chapter is devoted to
the Solved Problems section, which provides detailed examples for all key
concepts.

The following figure illustrates the dependencies among the chapters.

]]
Introduction Performance 8 Supervised 7
I Surfaces Hebb
] 2 I I
Architectures Peformance 2 Associative 15
] Optimization Learning
llustrative 3 I |
Example Widrow-Hoff Competitive 16_
| Learning
Perceptron 4 I 1]
Learning Rule Backpropagation 18
I ! Grossberg
Signaland 5 Variations on 12 I)
Weight Vector Backpropagation ART
Spaces T I
I —_ 13 - 20
Generalization = Stability
Linear 6
Transformations : Y I
for Neural Dynamic Hopfield
Networks Networks
1 Radial Basis 17 =
Networks <+ Practical Training
| | |

[V v] 7] 7] R

Case Study 23
Function
Approximation

Case Study 24
Probability
Estimation

Case Study 25
Pattern
Recognition

Case Study 27
Prediction

Case Study 26
Clustering

Chapters 1 through 6 cover basic concepts that are required for all of the

remaining chapters. Chapter 1 is an introduction to the text, with a brief
historical background and some basic biology. Chapter 2 describes the ba-

pP-2

sic neural network architectures. The notation that is introduced in this
chapter is used throughout the book. In Chapter 3 we present a simple pat-
tern recognition problem and show how it can be solved using three differ-
ent types of neural networks. These three networks are representative of
the types of networks that are presented in the remainder of the text. In
addition, the pattern recognition problem presented here provides a com-
mon thread of experience throughout the book.

Much of the focus of this book will be on methods for training neural net-
works to perform various tasks. In Chapter 4 we introduce learning algo-
rithms and present the first practical algorithm: the perceptron learning
rule. The perceptron network has fundamental limitations, but it is impor-
tant for historical reasons and is also a useful tool for introducing key con-
cepts that will be applied to more powerful networks in later chapters.

One of the main objectives of this book is to explain how neural networks
operate. For this reason we will weave together neural network topics with
important introductory material. For example, linear algebra, which is the
core of the mathematics required for understanding neural networks, is re-
viewed in Chapters 5 and 6. The concepts discussed in these chapters will
be used extensively throughout the remainder of the book.

Chapters 7, and 15-19 describe networks and learning rules that are
heavily inspired by biology and psychology. They fall into two categories:
associative networks and competitive networks. Chapters 7 and 15 intro-
duce basic concepts, while Chapters 16—19 describe more advanced net-
works.

Chapters 8-14 and 17 develop a class of learning called performance learn-
ing, in which a network is trained to optimize its performance. Chapters 8
and 9 introduce the basic concepts of performance learning. Chapters 10—
13 apply these concepts to feedforward neural networks of increasing pow-
er and complexity, Chapter 14 applies them to dynamic networks and
Chapter 17 applies them to radial basis networks, which also use concepts
from competitive learning.

Chapters 20 and 21 discuss recurrent associative memory networks. These
networks, which have feedback connections, are dynamical systems. Chap-
ter 20 investigates the stability of these systems. Chapter 21 presents the
Hopfield network, which has been one of the most influential recurrent net-
works.

Chapters 2227 are different than the preceding chapters. Previous chap-
ters focus on the fundamentals of each type of network and their learning
rules. The focus is on understanding the key concepts. In Chapters 22-27,
we discuss some practical issues in applying neural networks to real world
problems. Chapter 22 describes many practical training tips, and Chapters
23-27 present a series of case studies, in which neural networks are ap-
plied to practical problems in function approximation, probability estima-
tion, pattern recognition, clustering and prediction.

P-3

Software

Preface

»2+2
ans= f|

MATLAB is not essential for using this book. The computer exercises can
be performed with any available programming language, and the Neural
Network Design Demonstrations, while helpful, are not critical to under-
standing the material covered in this book.

However, we have made use of the MATLAB software package to supple-
ment the textbook. This software is widely available and, because of its ma-
trix/vector notation and graphics, is a convenient environment in which to
experiment with neural networks. We use MATLAB in two different ways.
First, we have included a number of exercises for the reader to perform in
MATLAB. Many of the important features of neural networks become ap-
parent only for large-scale problems, which are computationally intensive
and not feasible for hand calculations. With MATLAB, neural network al-
gorithms can be quickly implemented, and large-scale problems can be
tested conveniently. These MATLAB exercises are identified by the icon
shown here to the left. (If MATLAB is not available, any other program-
ming language can be used to perform the exercises.)

The second way in which we use MATLAB is through the Neural Network
Design Demonstrations, which can be downloaded from the website
hagan.okstate.edu/nnd.html. These interactive demonstrations illustrate
important concepts in each chapter. After the software has been loaded into
the MATLAB directory on your computer (or placed on the MATLAB path),
it can be invoked by typing nnd at the MATLAB prompt. All
demonstrations are easily accessible from a master menu. The icon shown
here to the left identifies references to these demonstrations in the text.

The demonstrations require MATLAB or the student edition of MATLAB,
version 2010a or later. See Appendix C for specific information on using the
demonstration software.

Overheads

As an aid to instructors who are using this text, we have prepared a
companion set of overheads. Transparency masters (in Microsoft
Powerpoint format or PDF) for each chapter are available on the web at
hagan.okstate.edu/nnd.html.

Acknowledgments

Acknowledgments

We are deeply indebted to the reviewers who have given freely of their time
to read all or parts of the drafts of this book and to test various versions of
the software. In particular we are most grateful to Professor John Andreae,
University of Canterbury; Dan Foresee, AT&T; Dr. Carl Latino, Oklahoma
State University; Jack Hagan, MCI; Dr. Gerry Andeen, SRI; and Joan Mill-
er and Margie Jenks, University of Idaho. We also had constructive inputs
from our graduate students in ECEN 5733 at Oklahoma State University,
ENEL 621 at the University of Canterbury, INSA 0506 at the Institut Na-
tional des Sciences Appliquées and ECE 5120 at the University of Colo-
rado, who read many drafts, tested the software and provided helpful
suggestions for improving the book over the years. We are also grateful to
the anonymous reviewers who provided several useful recommendations.

We wish to thank Dr. Peter Gough for inviting us to join the staff in the
Electrical and Electronic Engineering Department at the University of
Canterbury, Christchurch, New Zealand, and Dr. Andre Titli for inviting
us to join the staff at the Laboratoire d'Analyse et d'Architecture des
Systems, Centre National de la Recherche Scientifique, Toulouse, France.
Sabbaticals from Oklahoma State University and a year’s leave from the
University of Idaho gave us the time to write this book. Thanks to Texas
Instruments, Halliburton, Cummins, Amgen and NSF, for their support of
our neural network research. Thanks to The Mathworks for permission to
use material from the Neural Network Toolbox.

P-5

1 Introduction

Objectives

Objectives 1-1
History 1-2
Applications 1-5
Biological Inspiration 1-8
Further Reading 1-10

As you read these words you are using a complex biological neural network.
You have a highly interconnected set of some 1011 neurons to facilitate your
reading, breathing, motion and thinking. Each of your biological neurons,
a rich assembly of tissue and chemistry, has the complexity, if not the
speed, of a microprocessor. Some of your neural structure was with you at
birth. Other parts have been established by experience.

Scientists have only just begun to understand how biological neural net-
works operate. It is generally understood that all biological neural func-
tions, including memory, are stored in the neurons and in the connections
between them. Learning is viewed as the establishment of new connections
between neurons or the modification of existing connections. This leads to
the following question: Although we have only a rudimentary understand-
ing of biological neural networks, is it possible to construct a small set of
simple artificial “neurons” and perhaps train them to serve a useful func-
tion? The answer is “yes.” This book, then, is about artificial neural net-
works.

The neurons that we consider here are not biological. They are extremely
simple abstractions of biological neurons, realized as elements in a pro-
gram or perhaps as circuits made of silicon. Networks of these artificial
neurons do not have a fraction of the power of the human brain, but they
can be trained to perform useful functions. This book is about such neu-
rons, the networks that contain them and their training.

1-1

History

1 Introduction

The history of artificial neural networks is filled with colorful, creative in-
dividuals from a variety of fields, many of whom struggled for decades to
develop concepts that we now take for granted. This history has been doc-
umented by various authors. One particularly interesting book is Neuro-
computing: Foundations of Research by John Anderson and Edward
Rosenfeld. They have collected and edited a set of some 43 papers of special
historical interest. Each paper is preceded by an introduction that puts the
paper in historical perspective.

Histories of some of the main neural network contributors are included at
the beginning of various chapters throughout this text and will not be re-

peated here. However, it seems appropriate to give a brief overview, a sam-
ple of the major developments.

At least two ingredients are necessary for the advancement of a technology:
concept and implementation. First, one must have a concept, a way of
thinking about a topic, some view of it that gives a clarity not there before.
This may involve a simple idea, or it may be more specific and include a
mathematical description. To illustrate this point, consider the history of
the heart. It was thought to be, at various times, the center of the soul or a
source of heat. In the 17th century medical practitioners finally began to
view the heart as a pump, and they designed experiments to study its
pumping action. These experiments revolutionized our view of the circula-
tory system. Without the pump concept, an understanding of the heart was
out of grasp.

Concepts and their accompanying mathematics are not sufficient for a
technology to mature unless there is some way to implement the system.
For instance, the mathematics necessary for the reconstruction of images
from computer-aided tomography (CAT) scans was known many years be-
fore the availability of high-speed computers and efficient algorithms final-
ly made it practical to implement a useful CAT system.

The history of neural networks has progressed through both conceptual in-
novations and implementation developments. These advancements, how-
ever, seem to have occurred in fits and starts rather than by steady
evolution.

Some of the background work for the field of neural networks occurred in
the late 19th and early 20th centuries. This consisted primarily of interdis-
ciplinary work in physics, psychology and neurophysiology by such scien-
tists as Hermann von Helmholtz, Ernst Mach and Ivan Pavlov. This early
work emphasized general theories of learning, vision, conditioning, etc.,
and did not include specific mathematical models of neuron operation.

1-2

History

The modern view of neural networks began in the 1940s with the work of
Warren McCulloch and Walter Pitts [McPi43], who showed that networks
of artificial neurons could, in principle, compute any arithmetic or logical

function. Their work is often acknowledged as the origin of the neural net-
work field.

McCulloch and Pitts were followed by Donald Hebb [Hebb49], who pro-
posed that classical conditioning (as discovered by Pavlov) is present be-
cause of the properties of individual neurons. He proposed a mechanism for
learning in biological neurons (see Chapter 7).

The first practical application of artificial neural networks came in the late
1950s, with the invention of the perceptron network and associated learn-
ing rule by Frank Rosenblatt [Rose58]. Rosenblatt and his colleagues built
a perceptron network and demonstrated its ability to perform pattern rec-
ognition. This early success generated a great deal of interest in neural net-
work research. Unfortunately, it was later shown that the basic perceptron
network could solve only a limited class of problems. (See Chapter 4 for
more on Rosenblatt and the perceptron learning rule.)

At about the same time, Bernard Widrow and Ted Hoff [WiHo060] intro-
duced a new learning algorithm and used it to train adaptive linear neural
networks, which were similar in structure and capability to Rosenblatt’s
perceptron. The Widrow-Hoff learning rule is still in use today. (See Chap-
ter 10 for more on Widrow-Hoff learning.)

Unfortunately, both Rosenblatt’s and Widrow’s networks suffered from the
same inherent limitations, which were widely publicized in a book by Mar-
vin Minsky and Seymour Papert [MiPa69]. Rosenblatt and Widrow were
aware of these limitations and proposed new networks that would over-
come them. However, they were not able to successfully modify their learn-
ing algorithms to train the more complex networks.

Many people, influenced by Minsky and Papert, believed that further re-
search on neural networks was a dead end. This, combined with the fact
that there were no powerful digital computers on which to experiment,
caused many researchers to leave the field. For a decade neural network re-
search was largely suspended.

Some important work, however, did continue during the 1970s. In 1972
Teuvo Kohonen [Koho72] and James Anderson [Ande72] independently
and separately developed new neural networks that could act as memories.
(See Chapter 15 and Chapter 16 for more on Kohonen networks.) Stephen
Grossberg [Gros76] was also very active during this period in the investi-
gation of self-organizing networks. (See Chapter 18 and Chapter 19.)

Interest in neural networks had faltered during the late 1960s because of
the lack of new ideas and powerful computers with which to experiment.

During the 1980s both of these impediments were overcome, and research
in neural networks increased dramatically. New personal computers and

1-3

1 Introduction

workstations, which rapidly grew in capability, became widely available. In
addition, important new concepts were introduced.

Two new concepts were most responsible for the rebirth of neural networks.
The first was the use of statistical mechanics to explain the operation of a
certain class of recurrent network, which could be used as an associative
memory. This was described in a seminal paper by physicist John Hopfield
[Hopf82]. (Chapter 20 and Chapter 21 discuss these Hopfield networks.)

The second key development of the 1980s was the backpropagation algo-
rithm for training multilayer perceptron networks, which was discovered
independently by several different researchers. The most influential publi-
cation of the backpropagation algorithm was by David Rumelhart and
James McClelland [RuMc86]. This algorithm was the answer to the criti-
cisms Minsky and Papert had made in the 1960s. (See Chapter 11 for a de-
velopment of the backpropagation algorithm.)

These new developments reinvigorated the field of neural networks. Since
the 1980s, thousands of papers have been written, neural networks have
found countless applications, and the field has been buzzing with new the-
oretical and practical work.

The brief historical account given above is not intended to identify all of the
major contributors, but is simply to give the reader some feel for how
knowledge in the neural network field has progressed. As one might note,
the progress has not always been “slow but sure.” There have been periods
of dramatic progress and periods when relatively little has been accom-
plished.

Many of the advances in neural networks have had to do with new con-
cepts, such as innovative architectures and training rules. Just as impor-
tant has been the availability of powerful new computers on which to test
these new concepts.

Well, so much for the history of neural networks to this date. The real ques-
tion is, “What will happen in the future?” Neural networks have clearly
taken a permanent place as important mathematical/engineering tools.
They don’t provide solutions to every problem, but they are essential tools
to be used in appropriate situations. In addition, remember that we still
know very little about how the brain works. The most important advances
in neural networks almost certainly lie in the future.

The large number and wide variety of applications of this technology are
very encouraging. The next section describes some of these applications.

1-4

Applications

Applications

A newspaper article described the use of neural networks in literature re-
search by Aston University. It stated that “the network can be taught to
recognize individual writing styles, and the researchers used it to compare
works attributed to Shakespeare and his contemporaries.” A popular sci-
ence television program documented the use of neural networks by an Ital-
ian research institute to test the purity of olive oil. Google uses neural
networks for image tagging (automatically identifying an image and as-
signing keywords), and Microsoft has developed neural networks that can
help convert spoken English speech into spoken Chinese speech. Research-
ers at Lund University and Skane University Hospital in Sweden have
used neural networks to improve long-term survival rates for heart trans-
plant recipients by identifying optimal recipient and donor matches. These
examples are indicative of the broad range of applications that can be found
for neural networks. The applications are expanding because neural net-
works are good at solving problems, not just in engineering, science and
mathematics, but in medicine, business, finance and literature as well.
Their application to a wide variety of problems in many fields makes them
very attractive. Also, faster computers and faster algorithms have made it
possible to use neural networks to solve complex industrial problems that
formerly required too much computation.

The following note and Table of Neural Network Applications are repro-
duced here from the Neural Network Toolbox for MATLAB with the per-
mission of the MathWorks, Inc.

A 1988 DARPA Neural Network Study [DARP88] lists various neural net-
work applications, beginning with the adaptive channel equalizer in about
1984. This device, which is an outstanding commercial success, is a single-
neuron network used in long distance telephone systems to stabilize voice
signals. The DARPA report goes on to list other commercial applications,
including a small word recognizer, a process monitor, a sonar classifier and
a risk analysis system.

Thousands of neural networks have been applied in hundreds of fields in
the many years since the DARPA report was written. A list of some of those
applications follows.

Aerospace

High performance aircraft autopilots, flight path simulations,
aircraft control systems, autopilot enhancements, aircraft com-
ponent simulations, aircraft component fault detectors

1-5

1 Introduction

Automotive

Automobile automatic guidance systems, fuel injector control,
automatic braking systems, misfire detection, virtual emission
sensors, warranty activity analyzers

Banking

Check and other document readers, credit application evalua-
tors, cash forecasting, firm classification, exchange rate fore-
casting, predicting loan recovery rates, measuring credit risk

Defense

Weapon steering, target tracking, object discrimination, facial
recognition, new kinds of sensors, sonar, radar and image sig-
nal processing including data compression, feature extraction
and noise suppression, signal/image identification

Electronics
Code sequence prediction, integrated circuit chip layout, pro-
cess control, chip failure analysis, machine vision, voice syn-
thesis, nonlinear modeling

Entertainment

Animation, special effects, market forecasting

Financial
Real estate appraisal, loan advisor, mortgage screening, corpo-
rate bond rating, credit line use analysis, portfolio trading pro-
gram, corporate financial analysis, currency price prediction
Insurance

Policy application evaluation, product optimization

Manufacturing

Manufacturing process control, product design and analysis,
process and machine diagnosis, real-time particle identifica-
tion, visual quality inspection systems, beer testing, welding
quality analysis, paper quality prediction, computer chip qual-
ity analysis, analysis of grinding operations, chemical product
design analysis, machine maintenance analysis, project bid-
ding, planning and management, dynamic modeling of chemi-
cal process systems

1-6

Applications

Medical
Breast cancer cell analysis, EEG and ECG analysis, prosthesis
design, optimization of transplant times, hospital expense re-
duction, hospital quality improvement, emergency room test
advisement

Oil and Gas
Exploration, smart sensors, reservoir modeling, well treatment
decisions, seismic interpretation

Robotics
Trajectory control, forklift robot, manipulator controllers, vi-
sion systems, autonomous vehicles

Speech
Speech recognition, speech compression, vowel classification,
text to speech synthesis

Securities

Market analysis, automatic bond rating, stock trading advisory
systems
Telecommunications

Image and data compression, automated information services,
real-time translation of spoken language, customer payment
processing systems

Transportation
Truck brake diagnosis systems, vehicle scheduling, routing
systems

Conclusion

The number of neural network applications, the money that has been in-
vested in neural network software and hardware, and the depth and
breadth of interest in these devices is enormous.

1-7

1 Introduction

Biological Inspiration

The artificial neural networks discussed in this text are only remotely re-
lated to their biological counterparts. In this section we will briefly describe
those characteristics of brain function that have inspired the development
of artificial neural networks.

The brain consists of a large number (approximately 1011) of highly con-
nected elements (approximately 104 connections per element) called neu-
rons. For our purposes these neurons have three principal components: the
dendrites, the cell body and the axon. The dendrites are tree-like receptive
networks of nerve fibers that carry electrical signals into the cell body. The
cell body effectively sums and thresholds these incoming signals. The axon
is a single long fiber that carries the signal from the cell body out to other
neurons. The point of contact between an axon of one cell and a dendrite of
another cell is called a synapse. It is the arrangement of neurons and the
strengths of the individual synapses, determined by a complex chemical
process, that establishes the function of the neural network. Figure 1.1 is
a simplified schematic diagram of two biological neurons.

Dendrites

Synapse

Figure 1.1 Schematic Drawing of Biological Neurons

Some of the neural structure is defined at birth. Other parts are developed
through learning, as new connections are made and others waste away.
This development is most noticeable in the early stages of life. For example,

1-8

Biological Inspiration

it has been shown that if a young cat is denied use of one eye during a crit-
ical window of time, it will never develop normal vision in that eye. Lin-
guists have discovered that infants over six months of age can no longer
discriminate certain speech sounds, unless they were exposed to them ear-
lier in life [WeTe84].

Neural structures continue to change throughout life. These later changes
tend to consist mainly of strengthening or weakening of synaptic junctions.
For instance, it is believed that new memories are formed by modification
of these synaptic strengths. Thus, the process of learning a new friend’s
face consists of altering various synapses. Neuroscientists have discovered
[MaGa2000], for example, that the hippocampi of London taxi drivers are
significantly larger than average. This is because they must memorize a
large amount of navigational information—a process that takes more than
two years.

Artificial neural networks do not approach the complexity of the brain.
There are, however, two key similarities between biological and artificial
neural networks. First, the building blocks of both networks are simple
computational devices (although artificial neurons are much simpler than
biological neurons) that are highly interconnected. Second, the connections
between neurons determine the function of the network. The primary ob-
jective of this book will be to determine the appropriate connections to solve
particular problems.

It is worth noting that even though biological neurons are very slow when
compared to electrical circuits (102 s compared to 10719 s), the brain is
able to perform many tasks much faster than any conventional computer.
This is in part because of the massively parallel structure of biological neu-
ral networks; all of the neurons are operating at the same time. Artificial
neural networks share this parallel structure. Even though most artificial
neural networks are currently implemented on conventional digital com-
puters, their parallel structure makes them ideally suited to implementa-
tion using VLSI, optical devices and parallel processors.

In the following chapter we will introduce our basic artificial neuron and
will explain how we can combine such neurons to form networks. This will
provide a background for Chapter 3, where we take our first look at neural
networks in action.

1-9

Further Reading

1 Introduction

[Ande72]

[AnRo88]

[DARPSS]

[Gros76]

J. A. Anderson, “A simple neural network generating an in-
teractive memory,” Mathematical Biosciences, Vol. 14, pp.
197-220, 1972.

Anderson proposed a “linear associator” model for associa-
tive memory. The model was trained, using a generaliza-
tion of the Hebb postulate, to learn an association between
input and output vectors. The physiological plausibility of
the network was emphasized. Kohonen published a closely
related paper at the same time [Koho72], although the two
researchers were working independently.

J. A. Anderson and E. Rosenfeld, Neurocomputing: Foun-
dations of Research, Cambridge, MA: MIT Press, 1989.

Neurocomputing is a fundamental reference book. It con-
tains over forty of the most important neurocomputing
writings. Each paper is accompanied by an introduction
that summarizes its results and gives a perspective on the
position of the paper in the history of the field.

DARPA Neural Network Study, Lexington, MA: MIT Lin-
coln Laboratory, 1988.

This study is a compendium of knowledge of neural net-
works as they were known to 1988. It presents the theoret-
ical foundations of neural networks and discusses their
current applications. It contains sections on associative
memories, recurrent networks, vision, speech recognition,
and robotics. Finally, it discusses simulation tools and im-
plementation technology.

S. Grossberg, “Adaptive pattern classification and univer-
sal recoding: I. Parallel development and coding of neural
feature detectors,” Biological Cybernetics, Vol. 23, pp. 121—
134, 1976.

Grossberg describes a self-organizing neural network
based on the visual system. The network, which consists of
short-term and long-term memory mechanisms, is a contin-
uous-time competitive network. It forms a basis for the
adaptive resonance theory (ART) networks.

1-10

[Gros80]

[Hebb 49]

[Hopf82]

[Koho'72]

[MaGa00]

Further Reading

S. Grossberg, “How does the brain build a cognitive code?”
Psychological Review, Vol. 88, pp. 375-407, 1980.

Grossberg’s 1980 paper proposes neural structures and
mechanisms that can explain many physiological behaviors
including spatial frequency adaptation, binocular rivalry,
etc. His systems perform error correction by themselves,
without outside help.

D. O. Hebb, The Organization of Behavior. New York:
Wiley, 1949.

The main premise of this seminal book is that behavior can
be explained by the action of neurons. In it, Hebb proposed
one of the first learning laws, which postulated a mecha-
nism for learning at the cellular level.

Hebb proposes that classical conditioning in biology is
present because of the properties of individual neurons.

dJ.dJ. Hopfield, “Neural networks and physical systems with
emergent collective computational abilities,” Proceedings
of the National Academy of Sciences, Vol. 79, pp. 2554—
2558, 1982.

Hopfield describes a content-addressable neural network.
He also presents a clear picture of how his neural network
operates, and of what it can do.

T. Kohonen, “Correlation matrix memories,” IEEE Trans-
actions on Computers, vol. 21, pp. 3563-359, 1972.

Kohonen proposed a correlation matrix model for associa-
tive memory. The model was trained, using the outer prod-
uct rule (also known as the Hebb rule), to learn an
association between input and output vectors. The mathe-
matical structure of the network was emphasized. Ander-
son published a closely related paper at the same time
[Ande72], although the two researchers were working inde-
pendently.

E. A. Maguire, D. G. Gadian, I. S. Johnsrude, C. D. Good, J.
Ashburner, R. S. J. Frackowiak, and C. D. Frith, “Naviga-
tion-related structural change in the hippocampi of taxi
drivers,” Proceedings of the National Academy of Sciences,
Vol. 97, No. 8, pp. 4398-4403, 2000.

Taxi drivers in London must undergo extensive training,
learning how to navigate between thousands of places in
the city. This training is colloquially known as “being on
The Knowledge” and takes about 2 years to acquire on av-

1-11

[McPi43]

[MiPa69]

[Rose58]

[RuMc86]

[WeTe84]

1 Introduction

erage. This study demonstrated that the posterior hippoc-
ampi of London taxi drivers were significantly larger
relative to those of control subjects.

W. McCulloch and W. Pitts, “A logical calculus of the ideas
immanent in nervous activity,” Bulletin of Mathematical
Biophysics., Vol. 5, pp. 115-133, 1943.

This article introduces the first mathematical model of a
neuron, in which a weighted sum of input signals is com-
pared to a threshold to determine whether or not the neu-
ron fires. This was the first attempt to describe what the
brain does, based on computing elements known at the
time. It shows that simple neural networks can compute
any arithmetic or logical function.

M. Minsky and S. Papert, Perceptrons, Cambridge, MA:
MIT Press, 1969.

A landmark book that contains the first rigorous study de-
voted to determining what a perceptron network is capable
of learning. A formal treatment of the perceptron was need-
ed both to explain the perceptron’s limitations and to indi-
cate directions for overcoming them. Unfortunately, the
book pessimistically predicted that the limitations of per-
ceptrons indicated that the field of neural networks was a
dead end. Although this was not true it temporarily cooled
research and funding for research for several years.

F. Rosenblatt, “The perceptron: A probabilistic model for
information storage and organization in the brain,” Psycho-
logical Review, Vol. 65, pp. 386—408, 1958.

Rosenblatt presents the first practical artificial neural net-
work — the perceptron.

D. E. Rumelhart and J. L. McClelland, eds., Parallel Dis-
tributed Processing: Explorations in the Microstructure of
Cognition, Vol. 1, Cambridge, MA: MIT Press, 1986.

One of the two key influences in the resurgence of interest
in the neural network field during the 1980s. Among other
topics, it presents the backpropagation algorithm for train-
ing multilayer networks.

J. F. Werker and R. C. Tees, “Cross-language speech per-
ception: Evidence for perceptual reorganization during the
first year of life,” Infant Behavior and Development, Vol. 7,
pp- 49-63, 1984.

1-12

[WiHo60]

Further Reading

This work describes an experiment in which infants from
the Interior Salish ethnic group in British Columbia, and
other infants outside that group, were tested on their abil-
ity to discriminate two different sounds from the Thompson
language, which is spoken by the Interior Salish. The re-
searchers discovered that infants less than 6 or 8 months of
age were generally able to distinguish the sounds, whether
or not they were Interior Salish. By 10 to 12 months of age,
only the Interior Salish children were able to distinguish
the two sounds.

B. Widrow and M. E. Hoff, “Adaptive switching cir-
cuits,”1960 IRE WESCON Convention Record, New York:
IRE Part 4, pp. 96-104, 1960.

This seminal paper describes an adaptive perceptron-like
network that can learn quickly and accurately. The authors
assume that the system has inputs and a desired output
classification for each input, and that the system can calcu-
late the error between the actual and desired output. The
weights are adjusted, using a gradient descent method, so
as to minimize the mean square error. (Least Mean Square
error or LMS algorithm.)

This paper is reprinted in [AnRo88].

1-13

2 Neuron Model and Network
Architectures

Objectives 2-1
Theory and Examples 2-2
Notation 2-2
Neuron Model 2-2
Single-Input Neuron 2-2
Transfer Functions 2-3
Multiple-Input Neuron 2-7
Network Architectures 2-9
A Layer of Neurons 2-9
Multiple Layers of Neurons 2-10
Recurrent Networks 2-13
Summary of Results 2-16
Solved Problems 2-20
Epilogue 2-22
Exercises 2-23

Objectives

In Chapter 1 we presented a simplified description of biological neurons
and neural networks. Now we will introduce our simplified mathematical
model of the neuron and will explain how these artificial neurons can be in-
terconnected to form a variety of network architectures. We will also illus-
trate the basic operation of these networks through some simple examples.
The concepts and notation introduced in this chapter will be used through-
out this book.

This chapter does not cover all of the architectures that will be used in this
book, but it does present the basic building blocks. More complex architec-
tures will be introduced and discussed as they are needed in later chapters.
Even so, a lot of detail is presented here. Please note that it is not necessary
for the reader to memorize all of the material in this chapter on a first read-
ing. Instead, treat it as a sample to get you started and a resource to which
you can return.

2-1

2 Neuron Model and Network Architectures

Theory and Examples

Notation

Unfortunately, there is no single neural network notation that is universal-
ly accepted. Papers and books on neural networks have come from many di-
verse fields, including engineering, physics, psychology and mathematics,
and many authors tend to use vocabulary peculiar to their specialty. As a
result, many books and papers in this field are difficult to read, and con-
cepts are made to seem more complex than they actually are. This is a
shame, as it has prevented the spread of important new ideas. It has also
led to more than one “reinvention of the wheel.”

In this book we have tried to use standard notation where possible, to be
clear and to keep matters simple without sacrificing rigor. In particular, we
have tried to define practical conventions and use them consistently.

Figures, mathematical equations and text discussing both figures and
mathematical equations will use the following notation:

Scalars — small italic letters: a,b,c
Vectors — small bold nonitalic letters: a,b,c
Matrices — capital BOLD nonitalic letters: A,B,C

Additional notation concerning the network architectures will be intro-
duced as you read this chapter. A complete list of the notation that we use
throughout the book is given in Appendix B, so you can look there if you
have a question.

Neuron Model

Weight

Bias

Net Input
Transfer Function

Single-Input Neuron

A single-input neuron is shown in Figure 2.1. The scalar input p is multi-
plied by the scalar weight w to form wp , one of the terms that is sent to the
summer. The other input, 1, is multiplied by a bias b and then passed to
the summer. The summer output », often referred to as the net input, goes
into a transfer function f, which produces the scalar neuron output a.
(Some authors use the term “activation function” rather than transfer func-
tion and “offset” rather than bias.)

If we relate this simple model back to the biological neuron that we dis-
cussed in Chapter 1, the weight w corresponds to the strength of a synapse,
the cell body is represented by the summation and the transfer function,
and the neuron output a represents the signal on the axon.

2-2

Hard Limit
Transfer Function

Neuron Model

Inputs General Neuron

N\ N
re w 2 n » f a }
lb
) J
a=f(wp+b)

Figure 2.1 Single-Input Neuron

The neuron output is calculated as

a = flwp+Db).

If, for instance, w = 3, p = 2 and b = -1.5, then
a = f(3(2)-1.5)= f(4.5)

The actual output depends on the particular transfer function that is cho-
sen. We will discuss transfer functions in the next section.

The bias is much like a weight, except that it has a constant input of 1.
However, if you do not want to have a bias in a particular neuron, it can be
omitted. We will see examples of this in Chapters 3, 7 and 16.

Note that w and b are both adjustable scalar parameters of the neuron.
Typically the transfer function is chosen by the designer and then the pa-
rameters w and b will be adjusted by some learning rule so that the neu-
ron input/output relationship meets some specific goal (see Chapter 4 for
an introduction to learning rules). As described in the following section, we
have different transfer functions for different purposes.

Transfer Functions

The transfer function in Figure 2.1 may be a linear or a nonlinear function
of n. A particular transfer function is chosen to satisfy some specification
of the problem that the neuron is attempting to solve.

A variety of transfer functions have been included in this book. Three of the
most commonly used functions are discussed below.

The hard limit transfer function, shown on the left side of Figure 2.2, sets
the output of the neuron to 0 if the function argument is less than 0, or 1 if
its argument is greater than or equal to 0. We will use this function to cre-
ate neurons that classify inputs into two distinct categories. It will be used
extensively in Chapter 4.

2-3

2 Neuron Model and Network Architectures

-b/w:
""""""" T AR A
a = hardlim (n) a = hardlim (wp+b)
Hard Limit Transfer Function Single-Input hardlim Neuron

Figure 2.2 Hard Limit Transfer Function

The graph on the right side of Figure 2.2 illustrates the input/output char-
acteristic of a single-input neuron that uses a hard limit transfer function.
Here we can see the effect of the weight and the bias. Note that an icon for
the hard limit transfer function is shown between the two figures. Such
icons will replace the general f in network diagrams to show the particular
transfer function that is being used.

Linear The output of a linear transfer function is equal to its input:

Transfer Function
a=n, (2.1)

as illustrated in Figure 2.3.

Neurons with this transfer function are used in the ADALINE networks,
which are discussed in Chapter 10.

a = purelin (n) a = purelin(wp+b)
Linear Transfer Function Single-Input purelin Neuron
Figure 2.3 Linear Transfer Function

The output (a) versus input (p) characteristic of a single-input linear neu-
ron with a bias is shown on the right of Figure 2.3.

Log-Sigmoid The log-sigmoid transfer function is shown in Figure 2.4.
Transfer Function

Neuron Model

a = logsig(n) a = logsig(wp+b)
Log-Sigmoid Transfer Function ~ Single-Input logsig Neuron

Figure 2.4 Log-Sigmoid Transfer Function

This transfer function takes the input (which may have any value between
plus and minus infinity) and squashes the output into the range 0 to 1, ac-
cording to the expression:

a=—1 (2.2)

1+e"

The log-sigmoid transfer function is commonly used in multilayer networks
that are trained using the backpropagation algorithm, in part because this
function is differentiable (see Chapter 11).

Most of the transfer functions used in this book are summarized in Table
2.1. Of course, you can define other transfer functions in addition to those
shown in Table 2.1 if you wish.

To experiment with a single-input neuron, use the Neural Network Design
Demonstration One-Input Neuron nnd2n1.

2-5

2 Neuron Model and Network Architectures

. MATLAB
Name Input/Output Relation Icon Function
.. =0 <0 .
Hard Limit ¢ " J: hardlim
a=1 n=0
. .. = -1 <0 .
Symmetrical Hard Limit ¢ ! :F hardlims
a=+1 n20
Linear a=n 74 purelin
a=0 n<0
Saturating Linear a=n 0<n<l1 / satlin
a= n>1
S tric Saturati a=-1 n<-1
mmetric Saturatin .
y Linear & a=n -1<n<l1 7£ satlins
a = n>1
. . 1 .
Log-Sigmoid a= oo l logsig
+e
Hyperbolic Tangent e .
ypers Lang a= en € 75 tansig
Sigmoid e
a=0 n<0
Positive Linear oslin
a=n 0<n 'Z p
.- =1 ith
Competitive “ peuron Wi max 1 C compet
a = 0 all other neurons

Table 2.1 Transfer Functions

2-6

Weight Matrix

Weight Indices

Neuron Model

Multiple-Input Neuron

Typically, a neuron has more than one input. A neuron with R inputs is
shown in Figure 2.5. The individual inputs p,.p,.....px are each weighted by
corresponding elements w, |,w, ,,....w; p of the weight matrix W .

Inputs Multiple-Input Neuron

N7 N

NN | J
a=f(Wp+b)

Figure 2.5 Multiple-Input Neuron

The neuron has a bias b, which is summed with the weighted inputs to
form the net input »:

=W P+ W Pyt e+ Wy gDpt b (2.3)
This expression can be written in matrix form:
n=Wp+b, (2.4)

where the matrix W for the single neuron case has only one row.

Now the neuron output can be written as
a=f(Wp+b). (2.5)

Fortunately, neural networks can often be described with matrices. This
kind of matrix expression will be used throughout the book. Don’t be con-
cerned if you are rusty with matrix and vector operations. We will review
these topics in Chapters 5 and 6, and we will provide many examples and
solved problems that will spell out the procedures.

We have adopted a particular convention in assigning the indices of the el-
ements of the weight matrix. The first index indicates the particular neu-
ron destination for that weight. The second index indicates the source of
the signal fed to the neuron. Thus, the indices in w, , say that this weight
represents the connection to the first (and only) neuron from the second
source. Of course, this convention is more useful if there is more than one
neuron, as will be the case later in this chapter.

2-7

Abbreviated Notation

2 Neuron Model and Network Architectures

We would like to draw networks with several neurons, each having several
inputs. Further, we would like to have more than one layer of neurons. You
can imagine how complex such a network might appear if all the lines were
drawn. It would take a lot of ink, could hardly be read, and the mass of de-
tail might obscure the main features. Thus, we will use an abbreviated no-
tation. A multiple-input neuron using this notation is shown in Figure 2.6.

Input Multiple-Input Neuron

N R
p a
B W N, i Btk
1XR @W’f
1 b N
R 1x1 1
/| J
a=f(Wp+b)

Figure 2.6 Neuron with R Inputs, Abbreviated Notation

As shown in Figure 2.6, the input vector p is represented by the solid ver-
tical bar at the left. The dimensions of p are displayed below the variable
as R x 1, indicating that the input is a single vector of R elements. These

inputs go to the weight matrix W, which has R columns but only one row
in this single neuron case. A constant 1 enters the neuron as an input and
is multiplied by a scalar bias ». The net input to the transfer function f is

n, which is the sum of the bias » and the product Wp . The neuron’s output
a is a scalar in this case. If we had more than one neuron, the network out-
put would be a vector.

The dimensions of the variables in these abbreviated notation figures will
always be included, so that you can tell immediately if we are talking about
a scalar, a vector or a matrix. You will not have to guess the kind of variable
or its dimensions.

Note that the number of inputs to a network is set by the external specifi-
cations of the problem. If, for instance, you want to design a neural network
that is to predict kite-flying conditions and the inputs are air temperature,
wind velocity and humidity, then there would be three inputs to the net-
work.

To experiment with a two-input neuron, use the Neural Network Design
Demonstration Two-Input Neuron (nnd2n2).

2-8

Network Architectures

Network Architectures

Layer

Commonly one neuron, even with many inputs, may not be sufficient. We
might need five or ten, operating in parallel, in what we will call a “layer.”
This concept of a layer is discussed below.

A Layer of Neurons

A single-layer network of S neurons is shown in Figure 2.7. Note that each
of the R inputs is connected to each of the neurons and that the weight ma-
trix now has S rows.

Inputs Layer of S Neurons

e N
N
N
"y

AN Y,

a=f(Wp+b)

Figure 2.7 Layer of S Neurons

The layer includes the weight matrix, the summers, the bias vector b, the
transfer function boxes and the output vector a. Some authors refer to the
inputs as another layer, but we will not do that here.

Each element of the input vector p is connected to each neuron through the
weight matrix W . Each neuron has a bias b,, a summer, a transfer func-
tion f and an output «, . Taken together, the outputs form the output vector
a.

It is common for the number of inputs to a layer to be different from the
number of neurons (i.e., R=S).

You might ask if all the neurons in a layer must have the same transfer
function. The answer is no; you can define a single (composite) layer of neu-
rons having different transfer functions by combining two of the networks

2-9

2 Neuron Model and Network Architectures

shown above in parallel. Both networks would have the same inputs, and
each network would create some of the outputs.

The input vector elements enter the network through the weight matrix
W:

Wi Wi - WiR

W o= |21 Wa2 o Wog

We | Weo oo W

5,1 Ws,2 SR (2.6)
As noted previously, the row indices of the elements of matrix W indicate
the destination neuron associated with that weight, while the column indi-
ces indicate the source of the input for that weight. Thus, the indices in
ws , say that this weight represents the connection fo the third neuron
from the second source.

Fortunately, the S-neuron, R-input, one-layer network also can be drawn in
abbreviated notation, as shown in Figure 2.8.

Input Layer of S Neurons

r N7 A

P a
Rx1 W\ Sx1I

SXR

Sx1
19 b 7

R Sx1
—/ \ J
a=f(Wp+b)

Figure 2.8 Layer of S Neurons, Abbreviated Notation

Here again, the symbols below the variables tell you that for this layer, p
is a vector of length R, W is an S x R matrix, and a and b are vectors of
length S. As defined previously, the layer includes the weight matrix, the
summation and multiplication operations, the bias vector b, the transfer
function boxes and the output vector.

Multiple Layers of Neurons

Now consider a network with several layers. Each layer has its own weight
matrix W, its own bias vector b, a net input vector n and an output vector
a. We need to introduce some additional notation to distinguish between

2-10

Layer Superscript

Inputs

Network Architectures

these layers. We will use superscripts to identify the layers. Specifically, we
append the number of the layer as a superscript to the names for each of
these variables. Thus, the weight matrix for the first layer is written as w' ,
and the weight matrix for the second layer is written as W~ . This notation
is used in the three-layer network shown in Figure 2.9.

First Layer Second Layer Third Layer

N A s A s A

1
Wi

n' a' w2 n? a

> /1

n a’,

SIE IS

))y)y
1
J b JE
1 1 1
D> nl2 a12 n22 a22 n32 a}z
X! X 2
s lb'2 S lbzz Do l’ﬂz
: 1 ' ' 1 ' ' 1
p nie! al_vl n2.2 az.? n3.3 a’q’
R z S>f1 s - IZ S}fz s & 3»f3 s>
lblsl 58 lbzsz 58 lb353
1 1 1
/U J & J - J
al :fl(Wlp+bl) aZ:fZ(W2a]+b2) a}:f3(w332+b3)

Output Layer
Hidden Layers

a3 = £ 3 (W3f 2 (W2 1 (Wip+b1)+b2)+b3)

Figure 2.9 Three-Layer Network

As shown, there are R inputs, S' neurons in the first layer, S* neurons in
the second layer, etc. As noted, different layers can have different numbers
of neurons.

The outputs of layers one and two are the inputs for layers two and three.
Thus layer 2 can be viewed as a one-layer network with R = S : inputs,

S = S neurons, and an S” x §' weight matrix W>. The input to layer 2 is
a' , and the output is a.

A layer whose output is the network output is called an output layer. The
other layers are called hidden layers. The network shown above has an out-
put layer (layer 3) and two hidden layers (layers 1 and 2).

The same three-layer network discussed previously also can be drawn us-
ing our abbreviated notation, as shown in Figure 2.10.

2-11

2 Neuron Model and Network Architectures

Input First Layer Second Layer Third Layer
N7 N\ N\ A\
P KN N N
Wi W2 W3
Rx1 S1x1 S$2x1 S3x1
51xR\@ll> f1 SZXS1\ n f2 sﬁxsﬂ\ n f3
Sx1 S2x1 S3x1
1—>b1j 1—>sz 1—>bsj
R Stx1 1 S2x1 S2 S3x1 3
_/ \ J L J L J
al :f](W‘p-i'b]) a2 =f2(W2al+b2) a3 =1f3(W3a2+b3)

a3 =1f3(W3if2(Waf! (W‘p+b‘)+b2) +b3)
Figure 2.10 Three-Layer Network, Abbreviated Notation

Multilayer networks are more powerful than single-layer networks. For in-
stance, a two-layer network having a sigmoid first layer and a linear second
layer can be trained to approximate most functions arbitrarily well. Single-
layer networks cannot do this.

At this point the number of choices to be made in specifying a network may
look overwhelming, so let us consider this topic. The problem is not as bad
as it looks. First, recall that the number of inputs to the network and the
number of outputs from the network are defined by external problem spec-
ifications. So if there are four external variables to be used as inputs, there
are four inputs to the network. Similarly, if there are to be seven outputs
from the network, there must be seven neurons in the output layer. Finally,
the desired characteristics of the output signal also help to select the trans-
fer function for the output layer. If an output is to be either -1 or 1, then
a symmetrical hard limit transfer function should be used. Thus, the archi-
tecture of a single-layer network is almost completely determined by prob-
lem specifications, including the specific number of inputs and outputs and
the particular output signal characteristic.

Now, what if we have more than two layers? Here the external problem
does not tell you directly the number of neurons required in the hidden lay-
ers. In fact, there are few problems for which one can predict the optimal
number of neurons needed in a hidden layer. This problem is an active area
of research. We will develop some feeling on this matter as we proceed to
Chapter 11, Backpropagation.

As for the number of layers, most practical neural networks have just two
or three layers. Four or more layers are used rarely.

We should say something about the use of biases. One can choose neurons
with or without biases. The bias gives the network an extra variable, and
so you might expect that networks with biases would be more powerful

2-12

Delay

Integrator

Network Architectures

than those without, and that is true. Note, for instance, that a neuron with-
out a bias will always have a net input n of zero when the network inputs
p are zero. This may not be desirable and can be avoided by the use of a
bias. The effect of the bias is discussed more fully in Chapters 3, 4 and 5.

In later chapters we will omit a bias in some examples or demonstrations.
In some cases this is done simply to reduce the number of network param-
eters. With just two variables, we can plot system convergence in a two-di-
mensional plane. Three or more variables are difficult to display.

Recurrent Networks

Before we discuss recurrent networks, we need to introduce some simple
building blocks. The first is the delay block, which is illustrated in Figure
2.11.

Delay

u(?) a(f)
—»D|—>
a(0)

-/
a®)=u(r-1)

Figure 2.11 Delay Block

The delay output a(¢) is computed from its input u(z) according to
a(t) = u(t-1). (2.7

Thus the output is the input delayed by one time step. (This assumes that
time is updated in discrete steps and takes on only integer values.) Eq. (2.7)
requires that the output be initialized at time ¢ = 0. This initial condition
is indicated in Figure 2.11 by the arrow coming into the bottom of the delay
block.

Another related building block, which we will use for the continuous-time
recurrent networks in Chapters 18-21, is the integrator, which is shown in
Figure 2.12.

2-13

Recurrent Network

2 Neuron Model and Network Architectures

Integrator

u(?)

a(0)

a(?)

-

a(f) = Ofu(r) dr + a(0)

Figure 2.12 Integrator Block

The integrator output a(r) is computed from its input u(z) according to

a(r) = _[;u(r)dr +2a(0).

(2.8)

The initial condition a(0) is indicated by the arrow coming into the bottom

of the integrator block.

We are now ready to introduce recurrent networks. A recurrent network is
a network with feedback; some of its outputs are connected to its inputs.
This is quite different from the networks that we have studied thus far,
which were strictly feedforward with no backward connections. One type of

discrete-time recurrent network is shown in Figure 2.13.

Recurrent Layer

n(+1)

a(t+1)

a(f)

=

7£

Sx1

D

|

J

Initial
Condition
/AR 4
- \—b w
Sx1 — \
19 b 7
S Sx1
/ N\
a(0)=p

Figure 2.13 Recurrent Network

2-14

a(t+1) = satlins(Wa(zr)+b)

Sx1>

Network Architectures

In this particular network the vector p supplies the initial conditions (i.e.,
a(0) = p). Then future outputs of the network are computed from previous
outputs:

a(l) = satlins(Wa(0)+b), a(2) = satlins(Wa(l)+b), ...

Recurrent networks are potentially more powerful than feedforward net-
works and can exhibit temporal behavior. These types of networks are dis-
cussed in Chapters 3, 14 and 18-21.

2-15

2 Neuron Model and Network Architectures

Summary of Results

Single-Input Neuron

Inputs

General Neuron

-

~

Pe

—/

Multiple-Input Neuron

N\

}’l»f

)y
lb

1

a=f(wp+b)

“»

J

Inputs Multiple-Input Neuron

—/

Input

4

N\

a=f(Wp+b)

Multiple-Input Neuron

N

P

Rx1

1P

R
__/ \

1x1

2-16

a=f(Wp+b)

Summary of Results

Transfer Functions

. MATLAB
Name Input/Output Relation Icon Function
_ =0 <0 .
Hard Limit . " J: hardlim
a=1 nx0
. _ = -1 <0 .
Symmetrical Hard Limit . " :F hardlims
a=+1 nx0
Linear a=n 74 purelin
a = n<0
Saturating Linear a=n 0<n<l1 / satlin
a=1 n>1
Symmetric Saturati a=-b e
mmetric Saturatin .
y Linear & a=n -1<n<l1 - satlins
a=1 n>1
. . 1 .
Log-Sigmoid a = oo _L logsig
+e
Hyperbolic Tangent e .
ypers L ang a= ¢ 7C tansig
Sigmoid e
a=0 n<0
Positive Linear oslin
a=n 0<n _Z p
.- a =1 neuron with max n
Competitive C compet
a = 0 all other neurons

2-17

2 Neuron Model and Network Architectures

Layer of Neurons

Input Layer of S Neurons

N7 A\

P a
Rx1 W\ Sx1I

SXR

Sx1
1 b %

R Sx1
__/ \ J
a=f(Wp+b)

Three Layers of Neurons

Input First Layer Second Layer Third Layer
N N N N

p al a2 a3
Rx1 Wl\ nl STx1 WZ\ n2 S2x1 W3\ ns Sx1
S'XR @_’ f1 $2x S 2 $Bx .52 £3

STx1 S2x1 S3x1
1 blj 1—>sz 1P b3j
R STx1 S 2x1 S2 S3x1 S3
__/ | NG J J
al :fl(Wlp+bl) aZ:fZ(WZal+b2) a}:f}(w3a2+b3)
a3 =3 (W3f2(Waf | (Wip+b!)+b2) +b3)

Delay

Delay

u(?) a(?)
—»{DI—>
a(0)

-/
a(t)=u(t-1)

2-18

Summary of Results

Integrator

Recurrent Network

u(?)

4>¥>—>

Integrator

a(0)

a(?)

- J
a(f) = 0fu(r) dr + a(0)

a(?)

Initial
Condition Recurrent Layer
N 4
P_ \—P w \‘
Sx1 n(t+1) a(t+1)
e j@ Sx1 »7£ Sx1 D
19 b
S Sx1 S
—/ N
a(0)=p a(t+1)=satlins(Wa(r)+b)

J

How to Pick an Architecture

Problem specifications help define the network in the following ways:

1. Number of network inputs = number of problem inputs

Sx1>

2. Number of neurons in output layer = number of problem outputs

3. Output layer transfer function choice at least partly determined by
problem specification of the outputs

2-19

2 Neuron Model and Network Architectures

Solved Problems

»2+2

ans= ||

P2.1

P2.2

P2.3

The input to a single-input neuron is 2.0, its weight is 2.3 and its
bias is -3.

i. What is the net input to the transfer function?
ii. What is the neuron output?
i. The net input is given by:
n=wp+b=(23)2)+(-3) =16
ii. The output cannot be determined because the transfer function is not
specified.
What is the output of the neuron of P2.1 if it has the following
transfer functions?
i. Hard limit
ii. Linear
iii. Log-sigmoid
i. For the hard limit transfer function:
a = hardlim(1.6)= 1.0
ii. For the linear transfer function:
a = purelin(1.6)= 1.6
iii. For the log-sigmoid transfer function:

1

l1+e

a = logsig(1.6) = = 0.8320

1.6

Verify this result using MATLAB and the function logsig, which is in the
MININNET directory (see Appendix B).
Given a two-input neuron with the following parameters: » = 1.2,

W = [3 2} and p = [_5 6} T, calculate the neuron output for the fol-

lowing transfer functions:
i. A symmetrical hard limit transfer function

ii. A saturating linear transfer function

2-20

P24

Solved Problems

iii. A hyperbolic tangent sigmoid (tansig) transfer function

First calculate the net input »n:

n=Wp+b=[37] {‘j +(12) = -18.

Now find the outputs for each of the transfer functions.

i. a = hardlims(-1.8)= -1

ii. a = sarlin(-1.8) = 0

iii. a = tansig(-1.8) = —-0.9468

A single-layer neural network is to have six inputs and two out-
puts. The outputs are to be limited to and continuous over the

range 0 to 1. What can you tell about the network architecture?
Specifically:

i. How many neurons are required?

ii. What are the dimensions of the weight matrix?
iii. What kind of transfer functions could be used?
iv. Is a bias required?

The problem specifications allow you to say the following about the net-
work.

i. Two neurons, one for each output, are required.

ii. The weight matrix has two rows corresponding to the two neurons and
six columns corresponding to the six inputs. (The product Wp is a two-el-
ement vector.)

iii. Of the transfer functions we have discussed, the logsig transfer func-
tion would be most appropriate.

iv. Not enough information is given to determine if a bias is required.

2-21

Epilogue

2 Neuron Model and Network Architectures

This chapter has introduced a simple artificial neuron and has illustrated
how different neural networks can be created by connecting groups of neu-
rons in various ways. One of the main objectives of this chapter has been to
introduce our basic notation. As the networks are discussed in more detail
in later chapters, you may wish to return to Chapter 2 to refresh your mem-
ory of the appropriate notation.

This chapter was not meant to be a complete presentation of the networks
we have discussed here. That will be done in the chapters that follow. We
will begin in Chapter 3, which will present a simple example that uses
some of the networks described in this chapter, and will give you an oppor-
tunity to see these networks in action. The networks demonstrated in
Chapter 3 are representative of the types of networks that are covered in
the remainder of this text.

2-22

Exercises

Exercises
E2.1 A single input neuron has a weight of 1.3 and a bias of 3.0. What possible
kinds of transfer functions, from Table 2.1, could this neuron have, if its
output is given below. In each case, give the value of the input that would
produce these outputs.
i 1.6
ii. 1.0
iii. 0.9963
iv. -1.0
E2.2 Consider a single-input neuron with a bias. We would like the output to be
-1 for inputs less than 3 and +1 for inputs greater than or equal to 3.
i. What kind of a transfer function is required?
ii. What bias would you suggest? Is your bias in any way related to the
input weight? If yes, how?
»2+2

ans=]

E2.3

E2.4

iii. Summarize your network by naming the transfer function and stat-
ing the bias and the weight. Draw a diagram of the network. Verify
the network performance using MATLAB.

Given a two-input neuron with the following weight matrix and input vec-

tor: W = [3 2} and p = [_5 7} T, we would like to have an output of 0.5. Do

you suppose that there is a combination of bias and transfer function that
might allow this?

i. Isthere a transfer function from Table 2.1 that will do the job if the
bias is zero?

ii. Is there a bias that will do the job if the linear transfer function is
used? If yes, what is it?

iii. Is there a bias that will do the job if a log-sigmoid transfer function
is used? Again, if yes, what is it?

iv. Isthere a bias that will do the job if a symmetrical hard limit trans-

fer function is used? Again, if yes, what is it?

A two-layer neural network is to have four inputs and six outputs. The
range of the outputs is to be continuous between 0 and 1. What can you tell
about the network architecture? Specifically:

2-23

2 Neuron Model and Network Architectures

i. How many neurons are required in each layer?

ii. What are the dimensions of the first-layer and second-layer weight
matrices?

iii. What kinds of transfer functions can be used in each layer?

iv. Are biases required in either layer?

E2.5 Consider the following neuron.

Input General Neuron

o D3] < I

1
—/ \ J
a=f(wp+b)

Figure P15.1 General Neuron

Sketch the neuron response (plot a versus p for -2<p<2) for the following
cases.

i w=1,b =1, f= hardlims.
ii.h w=-1,b=1,f= hardlims.
iii. w=2,b=3,f= purelin.
iv. w=2,b =3, f = satlins.

v. w=-2,b=-1,f= poslin.

2-24

Exercises

E2.6 Consider the following neural network.

Input Sat. Linear Layer Linear Layer
N7 A 4 A
WIll nll all
D e
l b, a’,
P 1 P
n 2 a 2
| > A
W, l blz
AN J N J
a' = satlin(W'p+b") a’ = purelin(W’a' +b’)

1 1 1 1 2 2 2
Wi :2,w2’] =1, b =2,b2=—1,wl’l = l,wl,zz—l,b] =0

Sketch the following responses (plot the indicated variable versus p for

-3<p<3).
1

i.on.
.1

ii. a;.
o1
iii. n,
. 1

iv. a,.
2

v. nj.
. 2

vi. aj.

2-25

3 An Illustrative Example

Objectives

Objectives 3-1
Theory and Examples 3-2
Problem Statement 3-2
Perceptron 3-3
Two-Input Case 3-4
Pattern Recognition Example 3-5
Hamming Network 3-8
Feedforward Layer 3-9
Recurrent Layer 3-10
Hopfield Network 3-12
Epilogue 3-15
Exercises 3-16

Think of this chapter as a preview of coming attractions. We will take a
simple pattern recognition problem and show how it can be solved using
three different neural network architectures. It will be an opportunity to
see how the architectures described in the previous chapter can be used to
solve a practical (although extremely oversimplified) problem. Do not ex-
pect to completely understand these three networks after reading this
chapter. We present them simply to give you a taste of what can be done
with neural networks, and to demonstrate that there are many different
types of networks that can be used to solve a given problem.

The three networks presented in this chapter are representative of the
types of networks discussed in the remaining chapters: feedforward net-
works (represented here by the perceptron), competitive networks (repre-
sented here by the Hamming network) and recurrent associative memory
networks (represented here by the Hopfield network).

3-1

3 An Illustrative Example

Theory and Examples

Problem Statement

A produce dealer has a warehouse that stores a variety of fruits and vege-
tables. When fruit is brought to the warehouse, various types of fruit may
be mixed together. The dealer wants a machine that will sort the fruit ac-
cording to type. There is a conveyer belt on which the fruit is loaded. This
conveyer passes through a set of sensors, which measure three properties
of the fruit: shape, texture and weight. These sensors are somewhat primi-
tive. The shape sensor will output a 1 if the fruit is approximately round
and a -1 ifitis more elliptical. The texture sensor will output a 1 if the sur-
face of the fruit is smooth and a -1 if it is rough. The weight sensor will
output a 1 if the fruit is more than one pound and a -1 ifit is less than one
pound.

The three sensor outputs will then be input to a neural network. The pur-
pose of the network is to decide which kind of fruit is on the conveyor, so
that the fruit can be directed to the correct storage bin. To make the prob-
lem even simpler, let’s assume that there are only two kinds of fruit on the
conveyor: apples and oranges.

Neural

I_K Network

O O O Sensors O
© © O]

Sorter

As each fruit passes through the sensors it can be represented by a three-
dimensional vector. The first element of the vector will represent shape,
the second element will represent texture and the third element will repre-
sent weight:

3-2

Perceptron

shape
P = |texture| - (3.1)
weight

Therefore, a prototype orange would be represented by

pl = —1 > (32)

and a prototype apple would be represented by

1
P, =|1]- (3.3)

-1

The neural network will receive one three-dimensional input vector for
each fruit on the conveyer and must make a decision as to whether the fruit

is an orange (p,) or an apple (p,).

Now that we have defined this simple (trivial?) pattern recognition prob-
lem, let’s look briefly at three different neural networks that could be used
to solve it. The simplicity of our problem will facilitate our understanding
of the operation of the networks.

Perceptron

The first network we will discuss is the perceptron. Figure 3.1 illustrates a
single-layer perceptron with a symmetric hard limit transfer function hard-
lims.

Inputs Sym. Hard Limit Layer

N N
® 5w ")
Rx1 SXR\ n :I: Sx1
j Sx1
1-» b
R \Sx1 S)

a = hardlims (Wp +b)

Figure 3.1 Single-Layer Perceptron

3-3

3 An Illustrative Example

Two-Input Case

Before we use the perceptron to solve the orange and apple recognition
problem (which will require a three-input perceptron, i.e., R = 3), it is use-
ful to investigate the capabilities of a two-input/single-neuron perceptron
(R = 2), which can be easily analyzed graphically. The two-input percep-
tron is shown in Figure 3.2.

Inputs Two-Input Neuron

N N\

P1 Wi

}’l»:,: (1»

>
)2 Wi, lb

U J
a = hardlims (Wp+Db)

Figure 3.2 Two-Input/Single-Neuron Perceptron

Single-neuron perceptrons can classify input vectors into two categories.
For example, for a two-input perceptron, if w, | = -1 and w, , = 1